#### DYNAMIC IODINE AND GADOLINIUM K-EDGE KIDNEY PERFUSION IMAGING USING SPECTRAL PHOTON-COUNTING CT

#### ECR 2017

Salim Si-Mohamed<sup>1,2</sup>, Gabrielle Normand<sup>3,4</sup>, Sandrine Lemoine<sup>3,4</sup>, Monica Sigovan<sup>1,2</sup>, Daniel Bar-Ness<sup>1,2</sup>, Jean-Baptiste Langlois<sup>5</sup>, Loïc Boussel<sup>1,2</sup>, Laurent Juillard<sup>3,4</sup>, Philippe Douek<sup>1,2</sup>

1 – Hospices Civils de Lyon, Radiology Department

2- CREATIS laboratoire, CNRS UMR 5220, INSERM U1206, Université Lyon 1, INSA Lyon

3 – Hospices Civils de Lyon, Nephrology Department

4 – Carmen Laboratory, INSERM 1060, Université Lyon 1, Lyon

5 – CERMEP





### DISCLOSURES

Nothing to disclose: Salim Si-Mohamed Gabrielle Normand Sandrine Lemoinde Daniel Bar-Ness Monica Sigovan Jean Baptiste Langlois Loic boussel Laurent Juillard Philippe Douek



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 643694



#### BACKGROUND







# BACKGROUND

- Spectral photon-counting CT
  - Kedge imaging <sup>(1)</sup>



Energy

• Advantages:

- Material specific K-edge imaging
- Absolute quantification of specific material

SPCCT IMAGING ALL THE PHOTONS

ECR 2017

(1) Schirra CO et al. Contrast Media & Molecular Imaging. 2014

## BACKGROUND

- Kidney perfusion
  - Easy to perform in animal model
  - Already iodine perfusion validated in CT imaging (1)
- BUT Drawbacks of iodine media contrast
  - hypersensitivity to iodinated agents
  - contra-indicated for use in patients with renal insufficiency
- Gadolinium is better indicated in these cases

(1)Lemoine et al, Radiology



#### OBJECTIVE

To test the feasibility of the SPCCT to assess kidney perfusion using Kedge imaging of Gadolinium compared to iodine map as reference, and HU conventional images.



## MATERIAL/METHODS

- Spectral photon-counting CT system
  - Photon-counting detectors
  - Modified clinical base
  - Conventional X ray tube
  - Field of vue of 160 mm
  - Gantry rotation time of 1 second
  - Parameters used:
    - Tube current of 100 mAs
    - Tube voltage of 120 kVp



Philips Spectral Photon Counting CT pre-clinical prototype UCBL, CERMEP, Lyon, France



#### MATERIAL/METHODS

- Dynamic renal perfusion imaging
  - Simultaneous injection of:
    - Gadolinium (0.5 mmol/ml, 3 ml/kg, Dotarem, Guerbet)
    - Iodine (400 mg/ml, 1 ml/kg, Iomeron, Bracco)
  - Same pharmacokinetics expected



#### MATERIAL/METHODS

- Under 2 conditions: baseline and dopamine infusion.
- Aortic and cortical time-attenuation curves were modeled to measure renal perfusion using a validated gamma variate model
  - conventional HU
  - iodine images
  - gadolinium images
- Measurements of K-edge Gd perfusion were compared using a regression analysis with the reference method using the iodinated contrast agent injected simultaneously.





#### RESULTS

• SPCCT provided high spatial resolution conventional HU, specific gadolinium Kedge and iodine material decomposition images.

#### HU images representation of the renal perfusion









#### Gadolinium images representation of the renal perfusion





#### RESULTS

#### SPCCT images allowed modelisation of kidney perfusion using a validated gamma variate model





ECR 2017



Significant correlation of the renal perfusion between HU and gadolinium and iodine images



# CONCLUSION

 High spatial resolution with HU, gadolinium and iodine images

- High spectral resolution
  - Discrimination of the contrast agents
  - Accuracy of the kidney perfusion modelisation using spectral images



### CONCLUSION

- SPCCT allows high resolution in vivo dynamic dual contrast kidney perfusion imaging and quantification with gamma variate modeling using either conventional HU or Gd K-edge specific imaging.
- Great interest to diagnose and prevent the evolution of numerous conditions responsible for a low renal perfusion toward vascular nephropathies, first of them being the renal artery stenosis



# ACKNOWLEDGEMENTS

University Lyon1 Claude Bernard, Creatis Laboratory, CNRS UMR 5220, INSERM U1206 Hospices Civils de Lyon, CERMEP, Centre d'imagerie du vivant Philips, CT Clinical Science, Suresnes, France Philips Research Laboratories, Hamburg, Germany Philips, Global Advanced Technologies, CT, Haifa, Israel **BRACCO** Imaging S.P.A King's College, London VOXCAN Universita degli Studi di Torino Erasmus University, Rotterdam **Cliniques Universitaires Saint-Luc, Bruxelles** Lyon Ingenierie Projet **University of Pennsylvania** 

















